2019 Annual Gulf Coast Ecosystem Restoration Council Report

Texas RESTORE Centers of Excellence

(October 01, 2018 - September 30, 2019)
Table of Contents

I. Executive Summary ... 4

II. Programmatic Elements ... 5
 A. Award Recipient .. 5
 B. Award Subrecipient(s) ... 6

III. Financial Elements ... 15
 A. Award Recipient .. 15
 B. Award Subrecipient(s) ... 15

IV. Gulf Coast Ecosystem Restoration Council Element 16
 A. Leveraging Multipliers ... 16
I. Executive Summary

In January 2015, Texas Commission on Environmental Quality (TCEQ) competitively selected two consortia, the Texas A&M University Corpus Christi - Texas OneGulf Consortium and University of Houston (UofH) - Subsea Systems Institute.

OneGulf
The mission of the Texas OneGulf (OG) Center of Excellence is to gather and improve knowledge about the Gulf of Mexico to inform decision making around the challenges to environmental and economic sustainability of the Gulf of Mexico and its impact on the health and well-being of Texans and the nation. Texas OneGulf is designed with the capacity and flexibility to address all five focus disciplines denoted in Section 1605 of RESTORE. This Center has been awarded funding and has begun or completed activities on eight projects. Highlights include: Stakeholder Communication and Engagement Plan was completed, Hurricane Harvey Decision Support and Harmful Algal Bloom Monitoring projects have commenced and made significant progress.

Subsea Systems Institute
The Subsea Systems Institute (SSI) is a Center of Excellence formed under the Restore Act and represents a collaboration between the University of Houston, Rice University and NASA/Johnson Space Center. The SSI has a focus on the translational engineering, validation science and appropriate policy towards maintaining the technological, economic and workforce leadership of the Gulf coast area in the realm of deepwater and ultra-deepwater hydrocarbon use. The key outcomes from the work of the SSI are:

- Provide unbiased third-party validation to build public trust in the safety and operation of offshore drilling and production;
- Economically develop and assist in the deployment of advantaged safest technologies for offshore energy development, elevate and ensure the energy industry’s safety and operational excellence in offshore applications;
- Be the repository for best practices and policies for deployment;
- Attract talent for jobs and investment in the local, state, and national economy and reinforce Houston and the state of Texas’s reputation as the Energy Capital of the World.

An Advisory Board and a Technical Advisory Committee have been established to support the governance and technical supervision of the SSI. The membership for both committees is on a volunteer basis drawn primarily from industry. These committees support both the strategic planning and the scope of technical work for SSI.
II. Programmatic Elements

A. Award Recipient

As the Texas Governor’s appointee to the RESTORE Council, Toby Baker, Executive Director of the TCEQ, has established Centers of Excellence in Texas in accordance with the requirements set forth in the RESTORE Act and U.S. Treasury regulations. On behalf of Baker and the Governor, TCEQ has received two awards from Treasury totaling $6,230,588 ($4,036,238 on June 9, 2015 and $2,194,350 on October 31, 2017) that addresses all five disciplines denoted in Section 1605 of RESTORE (1605).

Annual TCEQ accomplishments include:

- completed sub-awarding process for two Proposal of Grant Activities to the Centers;
- monitored and reviewed deliverables of Centers;
- responded to inquiries from Centers;
- reviewed invoices and processed eligible expenditure reimbursements;
- generated and submitted required federal reporting;
- held End-of-Year meetings with each of the two Centers to discuss detailed reviews of the progress of each of the projects;
- coordinated an Institutional Review Board (IRB) exemption request with Treasury for Proposal of Grant Activities (PGA) Stakeholder Communication and Engagement Plan project (previously titled: Gulf coast Health Alliance: achieving Resiliency Together);
- coordinated a request for prior approval of participant support cost with Treasury for lower tier sub-awardee for Stakeholder Communication and Engagement Plan project;
- coordinated prior approval of foreign travel for lower tier sub-awardee for Remote Robotics for Unmanned Human Environments project; and
- conducted site visit at Subsea Systems Institute to discuss new Robotics project and tour labs for Remote High Power for Subsea Emergencies and Hazard Mitigation and Facility Monitoring Program: Fiber-Optic Seismic Systems projects.
B. Award Subrecipient(s)

Texas OneGulf Consortium

The nine participants in the Texas OneGulf Consortium include:
- Texas A&M University Harte Research Institute for Gulf of Mexico;
- Texas A&M University at Galveston;
- University of Houston Law Center;
- Texas A&M University Center for Translational Environmental Health Research (CTEHR);
- Gulf of Mexico Coastal Ocean Observing Regional Association (GCOOS);
- University of Texas Medical Branch at Galveston (UTMB);
- Texas A&M University Geochemical and Environmental Research Group (GERG);
- University of Texas Brownsville (Rio Grande Valley); and
- Texas State University the Meadows Center for Water and the Environment.

Project Activities: One Gulf
1-57790 General Operations of Center of Excellence project, principals Dr. Larry McKinney (Harte) and Dr. Jennifer Horney (TAMU), awarded 10/19/15, Scope of Work – This project tasks are to establish a fully functional Center of Excellence (COE). Project addresses all five eligible disciplines denoted in 1605. Status of performance and annual accomplishments include:
- Met the reporting requirements of the COE and continues to oversee the day-to-day operations and administration of the COE.
- Developed and implement a competitive grant program which includes:
 - Designing and initiating a grant portal function with webforms is completed.
 - Completed establishment of grant administration and management system with Texas A&M University Sponsored Research Services.
 - Completed establishment of grant review system within the Texas OneGulf Management Team and Science Advisory Committee.
 - Completed first and second Request for Proposal (RFP) which resulted in approved projects.

2-61593 Strategic Research and Action Plan (SRAP) project, principal Dr. Larry McKinney (Harte), awarded 01/07/2016, Scope of Work – This project is to develop a strategic planning process to address priority Gulf problems that would guide a grant process that fosters a science-based and solutions driven framework addressing the disciplines designated in the RESTORE Act. The project addresses all five 1605 eligible disciplines. The status of performance and annual accomplishments are listed below.
- All tasks, deliverables, and milestones for the project have now been completed.
• Future SRAPs will come from an annual cycle of input and review to help ensure that the SRAP evolves with Texas OneGulf as a means of guiding future work plans and focus.

3-62428 Environmental, Human Health and Safety project, principals Dr. Larry McKinney (Harte) and Dr. Jennifer Horney (TAMU) replaced Dr. Cheryl Walker (CTEHR), awarded 02/25/2016, Scope of Work – This project will create a first time infrastructure to support disaster research response encompassing both environmental, human health and economic assessment capabilities that can be employed rapidly to assess the impact of disaster along the Texas Gulf coast in real-time. The project addresses the 1605 eligible discipline of coastal and deltaic sustainability, restoration, and protection, including solutions and technology that allow citizens to live in a safe and sustainable manner in a coastal delta in the Gulf Coast Region. Status of performance and annual accomplishments include:
 • Completed all tasks, deliverables, and milestones for the project.

4-62971 Mechanisms Controlling Hypoxia – Gilder Applications to Gulf of Mexico Hypoxic Zone Monitoring project, principals are Dr. Larry McKinney (Harte) and Dr. Anthony Knap (GERG), awarded 04/22/2016, Scope of Work – This project will gather and share unique data about hypoxia off the Texas coast to assist in the development of a scalable glider monitoring implementation plan for the Gulf of Mexico hypoxic zone. The project addresses the 1605 eligible discipline comprehensive observation, monitoring, and mapping of the Gulf of Mexico. Status of performance and annual accomplishments include
 • All collected observations from the eight glider missions were examined and finalized quality assured data sets were placed on the dedicated project website at http://tabs.gerg.tamu.edu/tceq/
 • The infrastructure to quickly assess the impact of both man-made and natural disasters has been completed. It is recommended that a combination vehicle types (surface gliders and sub-surface buoyancy gliders) be deployed to maximize spatial coverage and temporal duration of the event.
 • PI Anthony Knap hosted and participated in the “Prioritizing Public Health Risks from Oil Spills: 2018 Stakeholder Meeting” on 6 April 2018
 • The final glider monitoring implementation plan for the DR2 program has been completed
 • All tasks, deliverables, and milestones in Mechanisms Controlling Hypoxia have now been completed

6-70739 Texas Knowledge Base project, principals Dr. Larry McKinney (Harte), Dr. James Gibeaut (Harte), and Dr. Matthew Howard (TAMU), awarded 01/18/2017, Scope of Work – This project will establish the Gulf of Mexico Coastal Ocean Observing System Regional Association’s (GCOOS-RA) and Gulf of
Mexico Research Initiative Information & Data Cooperative (GRIIDC) programs as part of the Texas OneGulf Knowledge Base (TOKB) information system. This system will provide decision-makers with the best available science and real-time data and information on which to make such decisions and act to the benefit of Texas. TOKB will bring together extensive, complementary, and well-maintained online information systems for marine science, oceanographic and related data currently available from the Gulf of Mexico. The project addresses all five 1605 eligible disciplines. Status of performance and annual accomplishments include:

- The development and launching of the first version of the website was a significant milestone that will serve to establish the TOKB for managing the coast and providing data and tools for addressing future environmental issues
- The coastal Texas Sensitive Areas geodatabase, which includes more than 30 state-wide Texas geographic layers showing the distribution of environments and other ancillary information such as dredged channels, and protected areas was compiled
- The first version of the Texas coast literature atlas was launched
- The deliverable requirements for the Knowledge Base data integration products have been completed
- All tasks, deliverables, and milestones for the Texas Knowledge Base project have now been completed

7-84395 Stakeholder Communication and Engagement Plan, principal investigators Sharon Croisant (UTMB) and Katya Wowk (Harte), awarded 9/21/18, Scope of Work - This project aims to: 1) provide a stakeholder analysis, with emphasis on policy-and decision makers; 2) solicit broad-based stakeholder perceptions of short- and long-term issues and threats related to the Gulf; 3) analyze the ability of Texas OneGulf and the Texas OneGulf Network of Experts (TONE) to help address these issues; and 4) develop a comprehensive Communications and Engagement Plan for Texas OneGulf based on findings. The project addresses the 1605 eligible discipline comprehensive observation, monitoring, and mapping of the Gulf of Mexico. Status of performance and annual accomplishments include:

- Convened a series of meetings with TONE members (Galveston, Corpus Christi, and College Station) to determine priorities and gaps in research related to: Gulf status and trends, risks and threats, mitigation and adaptation, and recommendations for policy.
- Key informant interviews continued
- Completed final analysis for survey and interview data
- Completed final qualitative analysis
- Completed final report
- All tasks, deliverables, and milestones for the Texas Knowledge Base project have now been completed
8-91613 Hurricane Harvey Decision Support- Resilient Environments and Communities, principal investigators Katya Wowk (Harte), Yuriy Fovanov (UTMB), and George Golovko (UTMB), awarded 11/14/18, Scope of Work - This research will examine the impacts of Hurricane Harvey to help Texas OneGulf provide decision support by: 1) identifying data and linkages across public health, socioecological and environmental impacts in affected communities; 2) understanding impacts and recovery dynamics of key waterbodies, and potential linkages to community resilience; 3) understanding potential public health and socioeconomic impacts linked with environmental impacts; and 4) providing a framework for recovery that outlines strategic recommendations to improve resilience to future events, identifies gaps in mitigation planning and policy implementation, and provides recommendations to researchers and decision-makers to improve response, recovery, mitigation and data collection in subsequent events. Status of performance and annual accomplishments include: Researchers collected water samples to assess microbial communities post-Hurricane Harvey

- Researchers travelled to disaster-stricken communities in the Coastal Bend to assess the degree of alignment in community plans toward the overall goal of disaster resilience and mitigation, in at least two communities.
- Researchers created the survey protocol to conduct stakeholder interviews to assess the importance of relationships through a social network analysis. Researcher also applied to the TAMU Institutional Review Board (IRB) to ensure compliance with 45 CFR 46.118 for research involving human test subjects.
- Researchers conducted legal review of key challenges and consideration for disaster response and resilience in Texas, including by identifying any gaps or conflicts.
- Next Steps: Continue work on the Disaster Recovery Framework

9-92349 Harmful Algal Bloom Monitoring and Assessment Plan for Texas Estuaries, principal investigators Michael Wetz (Harte) and Andrew Ropicki (University of Florida), awarded 2/25/19, Scope of Work - This project will address two priority needs pertaining to HABs on the Texas coast, including: 1) an immediate need to understand the evolution and drivers of K. brevis blooms and toxin production in estuarine environments where human exposure to algal toxins is most likely, and 2) a longer-term need to develop a comprehensive HAB monitoring program and network in the Coastal Bend region of Texas that will ultimately serve as a framework for the rest of the Texas coast. Status of performance and annual accomplishments include:

- Engaged stakeholders to acquire information on strengths/weaknesses of current harmful algal bloom monitoring efforts in Texas
- Ordered equipment and supplies in preparation for field sampling this fall
- Next Steps: Synthesize stakeholder information, begin writing HAB monitoring plan, and conduct field sampling
Subsea Systems Institute Consortium

The Subsea Systems Institute is a collaboration between the University of Houston, Rice University, and National Aeronautics and Space Administration (NASA)/Johnson Space Center. The Subsea Systems Institute (SSI) is located on the University of Houston campus in Houston, TX.

Dr. Ramanan Krishnamoorti, serves as Director of SSI and Center of Excellence principle. He provides day-to-day leadership for the institute including external relations with industry and government institutions. Airica Rollins is the Program Manager with responsibility for the administration of the research projects. Charles McConnell (Rice) and Dr. Kamlesh Lulla (NASA-JSC) are the Co-PIs and provide institutional support to the Director.

All projects address the 1605 eligible discipline 3 (offshore energy development, including research and technology) to improve the sustainable and safe development of energy resources in the Gulf of Mexico.

• One Notice to Commence (NTC) awarded this reporting period.

Project Activities: SSI
1-57794 General Operations of the Center of Excellence, principal Dr. Ramanan Krishnamoorti (UofH), awarded 10/05/15, Scope of Work – This project tasks are the ongoing administrative monitoring of existing projects, the integration of industry expert insight, and meeting of the reporting requirements. The status of performance and annual accomplishments are listed below.
 • Continued ongoing monitoring of existing projects and reporting requirements.

2-62404 Remote High Power for Subsea Emergencies project, principals are Dr. Ramanan Krishnamoorti (UofH), Dr. James Tour (Rice), and Dr. Haleh Ardebili (UofH), awarded 05/03/2016, Scope of Work – The goal of this project is to develop a combination of two new technologies using batteries and high power supercapacitors for subsea applications including the control pod for a subsea blowout preventer (BOP). This work will pave the way for improved energy storage and power supply solutions that enable not only next generation blowout preventers to reliably operate and provide a safer environment for the exploration and production of oil in subsea environments, but to provide electrical high-power for a range of subsea equipment needs. The specific goals are to:
 • Design and fabricate high power, high voltage nanoporous nickel fluoride (NP-NF) thin-film supercapacitors;
 • Design and fabricate high capacity, thin-film Li ion batteries to trickle charge the supercapacitors;
• Stack and integrate NP-NF thin-film supercapacitors with thin-film Li ion batteries;
• Develop a prototype supercapacitor-battery unit for electrical testing under subsea environmental conditions.
• Completed all tasks, deliverables, and milestones for the project.

The project commenced with the design, fabrication and feasibility testing of thin-film Li ion batteries and thin-film supercapacitors. The integrated testing of nanoporous thin-film supercapacitors with thin-film Li ion batteries include tests under subsea environmental pressure conditions. Project was complete and final report submitted May 2018.

3-62406 A Model-Based Real-Time Annular Blowout Preventer (BOP) Monitoring System project, principals are Dr. Ramanan Krishnamoorti (UofH), Dr. Matthew Francheck (UofH), and Matthew Brake (Rice), awarded 05/03/2016, Scope of Work – This project will develop a rigorous analytical approach to systematic BOP monitoring using an adaptive model-based real-time strategy, and then validate/demonstrate the approach on a small-scale BOP annular health monitoring testbed. The program will focus on real time health and risk assessment (monitoring) of annular BOPs. A blowout preventer is a large specialized mechanical device used to seal, control, and monitor oil and gas wells to prevent the uncontrolled release (blowout) of crude oil and/or natural gas from a well. This project will produce a BOP Monitoring System capable of self-integration whereby it learns the specific BOP thereby enabling accurate estimations of BOP health. The status of performance and annual accomplishments are listed below.
• Completed experimentally validating the adaptive mode health monitoring solution for A Model-Based Real-Time Annular Blowout Preventer (BOP) Monitoring System project.
• Submitted the final report in August 2018.
• Completed all tasks, deliverables, and milestones for the project.

4-62408 Marine Drilling Hazard Mitigation and Production Facility Monitoring using Seismic and Sonar Imaging project, principals are Dr. Ramanan Krishnamoorti (UofH) and Dr. Robert Stewart (UofH), awarded 05/03/2016, Scope of Work – This project, in the first phase, addressed the areas of early kick detection, wellbore monitoring and subsea processing via subsea monitoring. The project adapts existing seismic technology for surveying geological formations to the specific purpose of monitoring the health of subsea drilling or production systems. The project will also develop a proof-of-concept monitoring system for the early detection and assessment of drilling or production problems. It will thus inform about the design and capability of a full field system which will contribute substantially toward the safety and efficacy of deep-water operations. The second
phase of the project included field trials of the systems. Phase 2 program was contingent on the results of this phase 1 and was not part of this project. The status of performance and annual accomplishments are listed below.

- Fiber-optic motion sensors (distributed acoustic systems - DAS) on the riser to monitor hydrocarbon flow and pressure transients. The riser is a flow line from the sea floor to the surface platform and forms part of an existing production facility. There is no funding for this component during the first phase of the project;
- Ocean-bottom seismometers (OBS) arrayed around the well-head to detect gas and overpressure zones, micro seismic events, and sediment deformation;
- Active sonar scanners near the BOP to create 3D images of the wellhead vicinity and possible hydrocarbon leaks.
- Completed all tasks, deliverables, and milestones for the project.
- The project’s next step to this project is being completed under 7-74785 Hazard Mitigation and Facility Monitoring Program: Fiber-Optic Seismic Systems.

5-62412 Autonomous Underwater Vehicles (AUV) for Subsea Energy Applications project, principals are Dr. Ramanan Krishnamoorti (UofH) and Dr. Fathi Ghorbel (Rice), awarded 06/08/2016, Scope of Work – Develop an AUV prototype that will be highly maneuverable in tight spaces, can hold station vertically, can perform docking, and will be capable of autonomous manipulation. The final goal of the project is to establish a sound and comprehensive program in autonomous AUVs for subsea energy applications with engagement and endorsement of major operators. This project is broken into two programs. Program 1 is to organize a workshop to engage industry in overviewing the state of the art of AUV technology and build a collaborative relationship with operators in subsea energy applications to define the new challenges of subsea AUVs. Program 2 is to build an updated, more functional, and more robust version of the Rice University RiSYS Lab swimming robot prototype and for it to be tested at NASA’s Neutral Buoyancy Lab. The status of performance and annual accomplishments are listed below.

- All appropriate paperwork has been filed and specifications for testing apparatus and space proximal to autonomous underwater vehicle (AUV) has been identified.
- Completed testing of updated prototype at NASA’s Neutral Buoyance Lab (NBL) for the autonomous underwater vehicle (AUV) project.
- Submitted the final report in August 2018.
- Completed all tasks, deliverables, and milestones for the project.

6-74270 Stress Wave Assisted Communications in Subsea Environments project, principals are Dr. Ramanan Krishnamoorti (UofH), Dr. Miao Pan (UofH), Dr.
Robert Stewart (UofH), Dr. Jiefu Chen (UofH), and Dr. Aijun Song (University of Alabama), awarded 06/30/2017, Scope of Work – Develop a novel stress wave-based communication method for subsea applications. This method of communication will bypass most drawbacks of conventional communication techniques (i.e. radio, optical, and acoustic) and allow artificial structures such as pipelines to be used as robust, low loss communication conduits. The status of performance and annual accomplishments are listed below.

- Underwater acoustic testing using distributed fiber optic sensors and piezoelectric transducers
- Realtime Demodulation of Stress Wave Signal in LabVIEW
- Transducer Fixture Design and Implementation
- Further Analysis of Wave Propagation in Pipe Structures
- Mode Analysis of Current Pipe Geometry
- Acoustic Experiments in Gulf of Mexico
- Project was completed and final report submitted September 2019.

7-74785 Hazard Mitigation and Facility Monitoring Program: Fiber-Optic Seismic Systems project, principals are Dr. Ramanan Krishnamoorti (UofH), Dr. Robert Stewart (UofH), and Dr. Michael Ho (UofH), awarded 08/24/2017, Scope of Work – Develop a proof-of-concept marine, fiber-optic vibration sensing system, an instrumented flow loop for the lab and field. Along with associated analysis and interpretation methods, this system will provide learnings for improved subsea reservoir monitoring and production: The Instrumented and Intelligent Marine Oilfield. Industry support will come in the form of collaborations with Apache Corporation, Lawrence Berkeley National Laboratory, OptaSense, and Halliburton. The status of performance and annual accomplishments are listed below.

- Successful buildout of pipeline, flow system with interrogator and fiberoptic System
- Performing seismic test in marine environments
- Testing the LaMarque, Texas site through a 100’ well and 200’ trench horizontal stretch and assessment at the bayou
- Successful measurement of fiber-optic sensors
- Project was completed and final report submitted April 2019.

8-84091 Remote Robotics for Unmanned Human Environments project, principals are Dr. Ramanan Krishnamoorti (UofH), Dr. Kimberly Hambuchen (NASA), Dr. Joshua Mehling (NASA), and Dr. Marcia O'Malley (Rice), awarded 07/17/2018, Scope of Work – Increase the ability of robotic assets to manage the physical operations and tasks necessary for both oil platform and spacecraft habitat maintenance by advancing the autonomous skills of dexterous robots capable of performing these remote tasks. The Robotics Advisory Council was engaged to develop roadmap for the Remote Robotics for Unmanned Human Environments project. The roadmap provides candidate tasks to be achieved by the robots used in the project. The specific tasks identified are:
• Advisory Council Kick-Off Meeting
• SmartTouch and Valkyrie Integration
• Collision Avoidance in Subsea Interfacing Robots and Oil Rig Platform Doors

Next steps are to complete force feedback control, test the transmission/receiving circuits in water, and to mobilize the provided roadmap.

9-93274 SmartTouch: Towards Autonomous Subsea Robotics for Underwater Pipeline Inspection project, principles are Zheng Chen (UofH), Co-Investigator Gangbing Song (UofH), and Siu Chun Michael Ho (UofH), awarded 01/10/2019, Scope of Work – develop transformative robotic and SmartTouch sensing technology, that will lead to a time efficient and cost-effective system for underwater pipeline inspection. Through this autonomous robotic system equipped with SmartTouch pipeline anomalies due to bolt loosening, seismic activity, offshore drilling, turbulence, and ship anchoring, may be detected at early stages and thus allow operators to make informed decisions on maintenance of the pipeline. The following tasks will be investigated to achieve the objective:

- SmartTouch sensor development
- Robotic manipulator development
- Force feedback grasping control
- Systems integration

This project has been mobilized with the sensor development and integration, energy-based monitoring methods, a completed robotic manipulator and force feedback grasping control. Next steps will include completion of the modeling of the connection interface and integration of the robotic manipulator with ROV and demonstrations.

10-93275 Flexible Low-Temperature Lithium Ion Batteries for Subsea Applications, principals are Dr. Haleh Ardebili, with co-investigator Dr. Rafael Verduzco, awarded 01/15/2019, Scope of Work – design and fabricate polymer-based flexible and safe lithium ion batteries (LIB) able to operate under subsea conditions. Potential applications include powering devices in underwater vehicles, emergency outage backup power, and subsea drilling structural energy storage. The device should be reliable, safe, and able to instantly provide power for subsea applications. The specific goals of this project are the following:

- Design/Fabricate LIBs (Steady and Long-Term Power Voltage at Low Temperatures)
- Boost the Performance of LIBs
- Develop Electro thermal Model and Conduct Simulation at Low Temperatures

This project initiated each task including the Design/Fabrication of the LIBs, the boosting of the performance of the LIBs through feasibility testing,
characterization, and performance optimization, and development of the electro thermal model and conduct simulation at low temperatures. The next steps are to assemble and test more prototype using the new fabricated polymer and to develop thermos electrochemical model and conduct simulations.

III. Financial Elements

A. Award Recipient
During this reporting period, TCEQ has drawn down funds and obligated project funding to the Centers:
- $6,230,588 awarded from Treasury, TCEQ has drawn down $5,649,725.64 (90.7%) for Center’s expenditure reimbursement request
- $2,823,657.78 of $3,018,119 (94%) has been obligated to Texas A&M University Corpus Christi - Texas OneGulf
- $2,922,588.75 of $3,018,119 (97%) has been obligated to University of Houston - Subsea Systems Institute (SSI)
- TCEQ has no leverage funds

B. Award Subrecipient(s)

<table>
<thead>
<tr>
<th>Center</th>
<th>Project</th>
<th>Awarded</th>
<th>Expended</th>
<th>Lower Tier Sub awardee</th>
<th>Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas OneGulf</td>
<td>1-57790</td>
<td>$768,318.00</td>
<td>$655,399.00</td>
<td>Amazee Texas A&M (TAMUHSC)</td>
<td>$18,500.00</td>
</tr>
<tr>
<td></td>
<td>2-61593</td>
<td>$139,041.78</td>
<td>$139,041.78</td>
<td>N/A</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>3-62428</td>
<td>$182,531.99</td>
<td>$182,531.99</td>
<td>Texas A&M (TAMUHSC) University of Texas (UTMB)</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>4-62971</td>
<td>$457,361.00</td>
<td>$392,622.77</td>
<td>Texas A&M (TAMU)</td>
<td>$457,361.00</td>
</tr>
<tr>
<td></td>
<td>6-70739</td>
<td>$389,443.00</td>
<td>$318,733.86</td>
<td>Texas A&M (TAMU)</td>
<td>$194,998.00</td>
</tr>
<tr>
<td></td>
<td>7-84395</td>
<td>$94,759.00</td>
<td>$74,679.02</td>
<td>University of Texas (UTMB)</td>
<td>$79,094.00</td>
</tr>
<tr>
<td></td>
<td>8-91613</td>
<td>$470,265.00</td>
<td>$86,037.47</td>
<td>University of Texas (UTMB) Texas A&M (Bush) Texas A&M (ISC)</td>
<td>$214,332.00 $75,572.00 $70,000.00 $72,000.00</td>
</tr>
</tbody>
</table>
IV. Gulf Coast Ecosystem Restoration Council Element

A. Leveraging Multipliers

Texas OneGulf Consortium

Texas OneGulf projects funded by the Office of the Governor focused on habitats, living marine resources, environmental flows, estuarine and coastal systems, offshore and deep gulf systems, socio-ecological connections, and the pressures and stressors that affect the current and future health of the Gulf of Mexico large marine ecosystem. Improved understanding in each of these areas is required to understand the system holistically. Therefore, our focus was to connect each of these research areas in a manner that is actionable and relevant to the improved understanding and management of the Gulf of Mexico.

1-57790 Total other funds for this project is $28,519 from the Harte Charitable Foundation and Harte Research Support Foundation to assist in with the important task of establishing the center and having it operational as soon as possible. The goal of Harte Research Institute (HRI) is to allow more money to be put toward...
research by providing additional funds that reduce the center's burden of administrative costs.

Coordination between RESTORE Centers of Excellence Texas OneGulf has played a leading role in establishing coordination between both designated and presumptive COE's. There is a monthly call between the Centers hosted by Florida RESTORE Act Centers of Excellence Program (FLRACEP), where the focus has been on joint research activities.

The Gulf Restoration Science Programs Ad Hoc Coordination Forum, hosted by the NOAA RESTORE Science Program, provides a venue for all Gulf science programs to come together to develop common data management, share funding opportunities and look for synergies and activities that can be shared. The Texas OneGulf Executive Director and Coordinator participates in the monthly call and attends events like Gulf of Mexico Oil Spill and Ecosystem Science Conference (GOMOSES). These face to face meetings serve to enhance coordination and joint actions, reduce duplication and afford opportunities to leverage individual actions.

In addition, Texas OneGulf collaborated with the NOAA RESTORE Science Program to hold a knowledge co-production workshop for Texas researchers and state and federal decision-makers. The workshop helped to strengthen coordinated research toward the production of usable, actionable science that meets RESTORE program needs.

The Texas OneGulf Executive Director also serves on the Friends Board of the Florida Institute of Oceanography, providing additional opportunities for coordination of COE funding. This Board also acts as part of the Florida COE Management Team and provides review and approval for funding FLRACEP projects. The management team looks for opportunities to minimize duplication and promote coordinated research.

6-70739 Total other funds for this project is $143,976. The Harte Research Support Foundation and a grant from Gulf of Mexico Alliance have provided two years of funding to support the Texas OneGulf Knowledge Base system.

This project is utilizing underserved datasets which are datasets of significant value that are difficult to use for one or more reasons. For example, a dataset may not be available online or if it is available online it may be in an obscure location. Data can be difficult to use if it is in an inconvenient format such as those used by some environmental sampling systems. Data use can be improved when data are transformed into preferred formats with complete metadata and served through systems that support both human and machine access.
Coordination between RESTORE Centers of Excellence (COE) Texas OneGulf has played a leading role in establishing coordination between both designated and presumptive COEs. There is a monthly call between the Centers hosted by Florida RESTORE Act Centers of Excellence Program (FLRACEP), where the focus has been on joint research activities.

The Gulf Restoration Science Programs Ad Hoc Coordination Forum, hosted by the NOAA RESTORE Science Program, provides a venue for all Gulf science programs to come together to develop common data management, share funding opportunities and look for synergies and activities that can be shared. The Texas OneGulf Executive Director participates in the monthly call and attends events like Gulf of Mexico Oil Spill and Ecosystem Science Conference (GOMOSES). These face to face meetings serve to enhance coordination and joint actions, reduce duplication and afford opportunities to leverage individual actions.

The Texas OneGulf Executive Director serves on the Friends Board of the Florida Institute of Oceanography, providing additional opportunities for coordination of COE funding. This Board also acts as part of the Florida COE Management Team and provides review and approval for funding FLRACEP projects. The management team looks for opportunities to minimize duplication and promote coordinated research.

Subsea Systems Institute
The Subsea Systems Institute has secured the grant with the Office of the Governor (OOG).

The following activities have taken place under the award from the OOG.

- **Research Programs:** This includes research programs that have not been funded by TCEQ. These programs are in the following categories:
 - programs identified through the TCEQ grant award process, but not funded by TCEQ, which are identified as valuable research topics that meet the SSI objectives; and
 - research topics that are identified through SSI engagement with industry or the government that meet SSI objectives including safety, risk mitigation and improved reliability.

- **The following Research Programs have been launched using OOG funds:**
 - **Pilot project** to develop new computational methods for hydrocarbon behavior in a marine riser.
 - The Principal Investigator on this project is Dr. Andrea Prosperetti (UH). This project has undertaken a theoretical and computational study of the character of hydrocarbons that are inadvertently introduced into a marine riser. This issue has been discussed with industry and the need for new methods and understanding has been identified in order to establish improved operating procedures. Current project status includes
a newly developed algorithm and has been successfully applied to a set of equations. This work may be extended through programs to be awarded by the Bureau of Safety and Environmental Enforcement (BSEE) and the Gulf Research Program (GRP). The value of the pilot program is $50,000.

- **Demonstration project** with industry partner The Jukes Group, to develop improved manufacturing and testing methods to predict the performance of API pipe flanges under a combination of loading conditions.
 - The Principal Investigator on this project is Dr. Gangbing Song (UH). This work will improve the leak performance of pipe flanges, as is a major topic for operators. In September 2017 a meeting was held with industry operators to engage in discussions to focus the testing of the flange in a way that would most benefit the industry and make improvements to industry standards. A follow up meeting was held with joint industry project-interested operators in May 2018 to discuss the preparation of a proposal to fund phase II. Current project status includes the writing of the proposal and planning of the demonstration testing. The cost of this demonstration project is $41,731.

- **Development project** of High-Power Density Fault Tolerant Subsea Drives with Advanced Circuit Breaker to support the ongoing development of the power requirements for subsea equipment.
 - The Principal Investigator on this project is Dr. Kaushik Rajashekara (UH). The first year of this project will be supported by the grant funds. There are several technology components to this program.
 - The development of advanced power converter topologies using high frequency magnetics to reduce the footprint of subsea and down-hole drive systems.
 - Real-time simulation of the entire subsea system to evaluate the harmonics, to study the effects of long-distance cable capacities and voltage stability.
 - The project also targets development of a novel solid-state DC circuit breaker and connector suitable for subsea systems.
 - The project launched in September 2017 and laboratory personnel have been established and a database was developed. Current project status includes testing and extracting data and experimental results have been verified and shown the capability of the proposed circuit performance. In the coming months, the thermal cycling test board which have already been designed, will be implemented and a high-temperature
SiCMOSFET and high-temperature gate driver will be installed, and tests will commence in high-temperature. The cost for the first year of research project is $148,000.

Center of Excellence federally funded Grant Activity Descriptions (GADs) that include leveraging multipliers are listed here:

- **GAD No. 2:**
 - Dr. James Tour (PI) provides supervision for work being done on the project at Rice as delineated in the SOW and proposal. His annualized salary is $129,272.00. His contribution to the project over the 22 months will be 1 month each year (12 months).
 - Year 1: PI salary will be provided from the Rice University (non-federal local) (1 month).
 - Year 2: PI salary will be provided from the Rice University (non-federal local) (1 month).
 - This amount includes a 3% merit increase.
 - Fringe Benefits are actual and is estimated at about 30% for faculty.

- **GAD No. 3:**
 - Dr. Matt Franchek (PI), with an annualized salary of $279,600, will dedicate 1-month effort to manage the UH portion of the work.
 - Year 1: $13,255.00 will be paid by the University funds (state appropriations) for .5 month in the academic year.
 - Year 2: $13,255.00 will be paid by the University funds (state appropriations) for .5 month in the academic year.
 - Fringe Benefits are actual and is estimated at 16% in the summer for this faculty.
 - Dr. Brake (Co-I) will supervise the work to be done on the 22-month project at Rice as delineated in the SOW.
 - Year 1: $10,946.94 will be paid by the University funds (non-federal local) for .4 month in the academic year.
 - Year 2: $11,095.01 will be paid by the University funds (non-federal local) for .4 month in the academic year.
 - Fringe Benefits rates for this faculty is 23.40%.

- **GAD No. 4:**
 - Dr. Rob Stewart (PI), with an annualized salary of $281,856.00, has dedicated .6 month in the summer (20%) and .5-month academic time (6%) to manage the work.
 - Year 1: $14,129.00 of the PI salary was provided by the grant and $11,744.00 by the university.
 - Fringe Benefits are actual and is estimated at 30% in the academic year for this faculty and 22% in the summer.
o Jiming Bao (Co-I) with an annualized salary of $137,592.00, dedicated .4-month summer (13%) and .5-month academic time (6%) to work on the project.
 · Year 1: $4,610.00 of the Co-I salary was provided by the grant and the other $5,733.00 by the university.
 · Fringe Benefits are actual and is estimated at 30% in the academic year for this faculty and 22% in the summer.
• GAD No. 5:
 o Dr. Fathi Ghorbel (PI) oversees the statistical analyses, data management, and be responsible for reporting the project's results.
 · Year 1: The PI will devote 2 months effort to the project. One-month salary will be provided from the grant funds and one-month funding will be provided by Rice University (non-federal funds). The PI will spend the remaining time not spent on the project on other university activities.
 · Fringe Benefits 23.4% for faculty.
o The use of an existing prototype AUV represents an in-kind contribution (Estimated amount $10,000.00).